Temporal variations of methane emissions from emergent aquatic macrophytes in two boreonemoral lakes

Linköping University expanding reality

Lina Törnqvist

Supervisors: David Bastviken and Per Milberg

Introduction

Methane (CH₄) is an important greenhouse gas produced in anaerobic sediment in freshwater lakes. CH₄ can be transported to the atmosphere via the roots and stems in the emergent aquatic macrophytes. Few investigations have been made on CH₄ emissions from emergent aquatic macrophytes on a temporal scale in freshwater environments.

Objective

This study aims to:

- evaluate possible temporal variations in CH₄ emission from different emergent aquatic macrophytes.
- II) test if the different variables: air temperature, light, air pressure, humidity, carbon dioxide fluxes, wind, lake type, species and biomass, can be factors controlling CH₄ emissions.

Method

The field study was carried out in the two freshwater lakes, Lake Erssjön and Lake Följesjön.

A static chamber with air-tight plastic was used to collect CH₄ gas from stands with **Phragmites** australis and Carex rostrata.

Results

- There was a seasonal variation for P. australis and C. rostrata. In general there were higher CH₄ emissions from Lake Följesjön and there were no differences in emissions between the species.
- Diel variations for P. australis and C. rostrata were found in the study. However, recurrent peaks at the same time were not found.
- Lake type and air temperature were the most important variables that can explain CH₄ emissions, where CH₄ emissions increased with the air temperature.
- Light, wind and the date over the growing season affected the CH₄ emissions from the emergent aquatic macrophytes to a smaller extent, compared to lake type and air temperature.

Categorical and continuous variables effect on emergent aquatic macrophytes CH₄ emissions per m², calculated with a model averaging from a GLZ (Generalized linear model). Including model averaging parameters estimate, model average estimate, standard error (SE), z-value, 95 % confidence interval (CI) and RI* for variables.

Methane flux (mmol m ⁻² d ⁻¹)		Standardized values					
	Estimate			CI interval			
		MAE*	SE	z-value	Lower	Upper	RI*
Intercept	2.502e+07	2.637	0.069	37.962	2.501	2.773	
Lake Erssjön (compared with Lake Följesjön)	-9.995e-01	-0.991	0.097	10.202	-1.181	-0.800	1.0
Air temperature (C°)	5.826e-02	0.896	0.172	5.182	0.557	1.235	1.0
Light (μmol m ⁻² sec ⁻¹)	-2.929e-04	-0.242	0.111	2.178	-0.459	-0.024	0.9
Wind (m/s)	-8.890e-02	-0.218	0.095	2.291	-0.404	-0.031	0.93
Date 1 (Measurement day)	1.894e-05	-0.279	0.135	2.057	-0.545	-0.013	0.9
Date 2 (Measurement day)	-6.740e-15	-0.342	0.187	1.821	-0.710	0.026	0.9
P. australis (compared to C. rostrata)	1.488e-01	0.172	0.090	1.913	-0.004	0.348	0.77
Air pressure (atm)	6.357e-01	0.028	0.102	0.270	-0.172	0.227	0.27
Biomass (g DW)	-1.011e-03	-0.145	0.115	1.259	-0.370	0.081	0.50
NEE (net ecosystem exchange CO ₂)	9.841e-05	0.092	0.085	1.077	-0.075	0.259	0.48
Time 1 (Time of the day)	-3.516e-02	-0.013	0.089	0.148	-0.189	0.163	0.12
Time 2 (Time of the day)	1.234e-11	0.115	0.238	0.481	-0.353	0.582	0.12

Seasonal variation in CH₄ emission (diel average with Cl_{95%}, n=7) from Phragmites australis and Carex rostrata in Lake Erssjön and Lake Följesjön. Note that no measurement was made in Lake Följesjön the 10 June

Conclusions

There were four main conclusions from the current study:

- I) There was a seasonal variation in CH₄ emissions.
- II) There was no trend with unique peaks in the within day CH₄ variations for *P. australis* and *C. rostrata*.
- III) The CH₄ emissions from P. australis and C. rostrata were relatively similar.
- IV) Type of lake and air temperature were the most important variables controlling CH₄ emissions.