# Spatial and temporal patterns in methane emissions in a boreonemoral lake



Linköping University expanding reality

Emma Jansson Supervisors: David Bastviken & Per Milberg

# Introduction

Methane  $(CH_4)$  is a greenhouse gas that have increase rapidly in the atmosphere. An often forgotten, yet important source of  $CH_4$  is lakes and the factors controlling the emissions are not fully known. From lakes, CH<sub>4</sub> can

reach the atmosphere three ways; diffusion, ebullition and emergent aquatic plants. Previous studies show variations with time and space, however not with this high resolution in a boreonemoral lake.

## Aims

This study aim to find how CH<sub>4</sub> emissions change spatially and temporally, how the proportion of ebullition and diffusion can be explained and if CH<sub>4</sub> emissions are different in two adjacent lakes.

# **Method**

CH<sub>4</sub> emissions was measured from May to September (7 times) for 24 or 48 hours using floating chambers. The floating chambers were positioned along depth dependent transects.

## **Results**

### **Spatial changes**

- $\circ$  The CH<sub>4</sub> emissions are higher in the inlets and the shallow parts of Lake Erssjön
- After the fall overturn Lake Erssjöns CH<sub>4</sub> emissions become

Lakes Erssjön until the last measurement (22 sep)

What causes changes in the CH<sub>4</sub> emissions in time and space?

Water temperature

#### more homogenous

#### **Temporal changes**

- CH<sub>4</sub> accumulates in the water during the summer stratification (May-Aug) in Lake Erssjön and was significantly lower after the fall overturn (Sep)
- Lake Följesjön shows the same pattern as in



- Oxygen saturation
- $\circ$  NH<sub>4</sub>
- Conductivity
- Phosphorus
- Time of the year (such as stratification)
- Surrounding environment in the catchment area



CH₄ flux in Lake Erssjön from May to September (Measuring date 1-7)



A) CH<sub>4</sub> flux in Lake Erssjön and Lake Följesjön from May to September. B) Diffusive and ebullition emission (ebullition diffusion included) change with depth in Lake Erssjön

# Conclusions

There are a lot of factors controlling CH<sub>4</sub> emissions from small molecules to surrounding environment to global aspects in space and time

The most important and significant factor controlling CH<sub>a</sub> emissions is water temperature - CH<sub>4</sub> emissions will increase the global warming and the global warming will increase the CH₄ emissions.

Linköping University: Biology, IFM, https://www.ifm.liu.se/edu/biology/master\_projects/2015/emma-jansson/, emmajansson@live.se, 2015-05-17