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Linköpings universitet

SE-581 83 Linköping, Sweden
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1 Abstract
Desensitisation is defined as a failure of a signaling pathway to respond to chronic
or repeated stimulation. The β-adrenergic receptor signaling pathway of the healthy
adult heart is known to desensitise, and then regain the sensitivity to stimulation
if given enough time to rest between stimulations (resensitisation). The fetal heart
does not desensitise, and in animal models of heart failure, a permanent desensiti-
sation have been observed. No isolated element of the signaling pathway have yet
been proven to be the sole modulator of the desensitisation behavior. Therefore
a mathematical model of the signaling pathway has been constructed, minimized
against theoretical desensitisation data and tested for resensitisation. The minimal
models and the original model were capable of describing the theoretical de- and
resensitisation of the pathway, and only one receptor type with three states was
required in the minimal models, but one feedback from the kinases either to phos-
phorylation of the receptor or to breakdown of cAMP. The original model was
also capable of describing experimental data of contraction force from chicken
cardiac tissue. The cardiac tissue displays the peak behavior of the desensitisation
when stimulated with ISO for ten minutes, and resensitises in less than 5 minutes.

2 List of abbreviations

AC Adenylyl cyclase
ATP Adenosine triphoshpate
cAMP Cyclic AMP or adenosine 3’, 5’ monophosphate
GPCR G-protein coupled receptor
G-protein Guanine nucleotide-binding protein
Gi G-protein which inhibits AC activation
Gs G-protein which stimulates AC activation
GRK G-protein coupled receptor kinase
HEK 293 Human Embryonic Kidney 293 cells
ISO Isoproterenol
ODE Ordinary differential equation
PKA Protein Kinase A
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3 Introduction
This thesis introduces a mathematical model able to describe the de- and resen-
sitisation of the cardiac β-adrenergic signaling pathway. The model is meant to
be used in further studies of the difference between adult and fetal hearts in this
pathway, as it has been shown that the desensitisation is prominent in adults, but
lacking in fetuses and embryos [1].

Basic facts about the β-adrenergic signaling pathway and how it desensitises
will be presented, followed by a general presentation of the philosophy and strat-
egy of computational systems biology as well as a short summary of the existing
models of the relevant pathways. Later sections of the thesis will treat the general
strategies of modeling in more detail, present one specific model constructed by
the author and describe how data to optimize this model was acquired. Last fol-
lows a discussion on the structure and predictions of the model, its limitations and
its physiological implications.

3.1 Beta receptors at large A common mechanism for maintaining home-
ostasis in the body is through regulatory hormones and neurotransmitters. These
substances are released from their site of manufacturing and travel to their target
cell where they elicit a response. Once they have reached their target cell, they
might pass the cell membrane, if their chemical structure allows it, and directly
effect their target mechanism inside the cell. However, the most common way for
them to work is to bind to the extracellular part of a receptor on the cell surface.
The receptor in turn will then carry the signal into the cell through a signaling
pathway that involves several different proteins.

The β-adrenergic receptors, or β-adrenoceptors, belong to the class of G-
protein coupled receptors (GPCRs). This is one of the most numerous and well
investigated classes of receptors, as well as the target of a large number of drugs.
GPCRs consist of seven membrane spanning α-helices connected by intra- and
extracellular loops, the loops determine the type of receptor. β-adrenergic recep-
tors exist in three different types, of which two are common in the heart: β1 and
β2, with β1 being by far most abundant [33]. Examples of known agonists for
the β1 and β2-adrenergic receptors are isoprenaline (ISO) and the catecholamines
adrenaline and noradrenaline. When an agonist that can not cross the plasma
membrane binds to the extracellular part of the receptor a conformational change
occurs and a heterotrimeric guanine- nucleotide-binding regulatory protein (G-
protein), bound to GTP and attached to the intracellular side of the receptor, is
activated. The G-protein then disassociates into Gα and Gβγ subunits. The sub-
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units in turn will carry the signal further through different pathways. In this thesis
we will consider the Gαs and Gαi pathways, which ultimately result in a change
in force and speed of the contraction of the heart. In these pathways the Gα sub-
unit affects adenylyl cyclase (AC). Depending on the type of G-protein, the α
subunit will affect AC differently. Gαs will activate its catalytic properties, while
Gαi will inhibit them. The signal from the G-protein is turned off when GTP is
hydrolyzed to GDP, which then has to be replaced by a new GTP in order for the
protein to be able to signal again. When AC is activated by Gαs it catalyzes the
conversion of ATP to cAMP. cAMP is a common second messenger that serves
many functions in the cell and a basal production is always present. It carries
and modulates the signal through attaching a phosphate group to other proteins, a
process called phosphorylation, inducing them to carry out their function. In or-
der to remove the phosphate group, dephosphorylate the protein, another group of
enzymes called phosphatases is required. The proteins phosphorylated by cAMP
relevant for this model are the kinases protein kinase A (PKA) and G-protein cou-
pled receptor kinases (GRKs). GRKs specifically phosphorylates the β-receptors,
thereby preventing them from signaling through Gαs. However, the β2 receptor in
it’s phosphorylated state is able to signal through Gαi instead [2]. PKA is a more
promiscuous protein than the GRKs and may phosphorylate the receptor, but also
trigger breakdown of cAMP or carry the signal further down the pathway to elicit
a cellular response, such as the opening of Ca2+ channels which will make the cell
contract [3], or phosphorylate other receptors and inhibit pathways otherwise not
connected to β adrenergic signaling (reviewed in [4] and [5]).

Once the receptor has been phosphorylated it may take one of several possible
routes. It can be dephosphorylated and coupled to a new G-protein, ready to be
activated again. It can also bind to β-arrestin, a protein which prevents reactivation
of the receptor and additionally causes its internalization. Once internalized, the
receptor can be dephosphorylated and recycled to the cell surface, or it can be
fused to an endosome and degraded.

3.2 The desensitisation specifically Desensitization of β-adrenergic recep-
tors in the adult heart is a complex process that happens in multiple steps, any of
which may be referred to as simply ”desensitisation” in the literature.

When the β-adrenergic receptor is first stimulated by an agonist, the cAMP
concentration or the force of the muscle contraction (Figure 6) displays a peak,
where the levels first rises considerably and then rapidly falls again to a new steady
state (Isa Lindgen unpublished data, [7], [1]). This peak effect is typical of a neg-
ative feedback loop. Biologically it is thought to be mediated by phosphorylation
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Figure 1: Signaling pathway of the β1-adrenergic receptor. Adapted with permis-
sion from [6].

of the receptor through the kinases activated by cAMP. The duration of the de-
sensitisation can be measured by a second activation only shortly after the first
activation, when the response from the system will be much subdued [1], [7].

β-arrestin that binds to GRK phosphorylated receptors will facilitate internal-
ization and downregulation of the receptor, which is the cause of the long-term
desensitization seen in patients suffering from certain cardio- vascular conditions
and in animal models of cardiac failure [8]. In congestive heart failure the heart is
unable to eject blood as efficiently as required, and thus the tissues in the rest of
the body will not get enough oxygen which will trigger release of cathecolamines.
In such circumstances the levels of circulating catecholamines in the blood are
high, but it does not help as a long-lasting desensitisation via a reduction of the
density of β-adrenoceptors have been shown in both a rat model [9], in humans
[10] [11] and in dog [12]. An elevation of Gi expression and functionhave been
noted [13] [14], along with a proportional reduction of the expression and func-
tion of Gs and a decrease in AC expression and catalytic ability [15], which will
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impair the signaling pathway. The desensitisation of the β adrenergic pathways
precludes long-lasting treatment with β agonists in cardio- vascular conditions
such as congestive heart failure.

Fetal hearts, however, do not desensitize at all but instead become sensitised
when stimulated [1], with an increase in the expression and function of Gs and AC
as well as a decrease in Gi expression and function[16] and changes in the β1/β2

ratio [4] [6] as compared to adult hearts. The fetal heart appears to be resistant to
downregulation of the receptor in face of repeated stimulation[16]. Activation of
fetal β-adrenoceptors also seem to desensitise other receptors who have an oppos-
ing effect on the cell [17].

The levels of circulating catecholamines during birth or hatching are very high,
a necessary preparation for neonatal life that affects cardiovascular, respiratory,
neurological and metabolic development. Slotkin et al [16] therefore hypothesize
that the desensitisation, which would otherwise protect the heart against mechan-
ical stress, has been programmed to develop postnatally in order to preserve these
delicate developmental processes. However, it result could also be interpreted as
the adult cells having lost some of the plasticity that is inherent of the developing
cells.

What are the mechanisms behind the fetal lack of desensitization? This ques-
tion is interesting enough on its own from a developmental perspective, but could
knowledge gained from it also be used to help people with cardiac dysfunction?

3.3 Systems biology Carl Sagan said ”The beauty of a living thing is not the
atoms that go into it, but the way those atoms are put together.” [18]. One of the
most fascinating aspects of biology is the fact that components, many of which
can not function on their own, when combined form something as complex and
multifunctional as a living being. This prompts the thought that a component that
shows one behavior or property on its own may show additional or completely
new behaviors when part of a system. This is the basic thought for the field of
systems biology, where experiences from engineering have been applied to bio-
logical systems in order to gain a deeper insight on how living things work.

Biological systems are often complex and large, with many parameters and
intrinsically noisy. They frequently signal on multiple levels and perform multi-
ple functions with several built-in control mechanisms. In computational systems
biology, specialized computer software is used to build and simulate models of
biological systems. With their superior computational power, these programs can
help us gain an overview of systems that are otherwise hard to intuitively predict,
offering interpretations and explanations that were not previously available. Mod-
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els may also separate between different hypotheses or formulate new ones, which
can be tested in the lab and the results used to improve the model, which will then
formulate new hypotheses, and so on in an iterative process. In silico experiments
are cheaper and simpler to run than wet lab ones, but the latter are still important
to prove hypotheses. In order to make computer generated models useful they
must be adapted to reality, and this is done by comparing their simulations to data
from in vivo or in vitro experiments. Without this comparison, or optimization
process, the model becomes nothing more than an extensive thought experiment.

There are many ways to build a mathematical model, and one must keep in
mind that a model is always a simplification of the biological system studied.
Therefore the strategy chosen for each model should reflect the question the model
aims to answer. Ideally, the construction of a mathematical model in a systems
biology setting is an iterative process where previous knowledge of the system is
used to formulate the model structure, which is then fitted to experimental data
and used to make predictions about the system. These predictions in turn can be
used for the construction of new experiments whose data may be integrated in
the model to make new predictions, which leads to new experiments, and so on.
How the model is constructed is highly dependent upon the question to which we
wish to apply it; a model can be quantitative or qualitative, constructed according
to several different mathematical methods and very general to very detailed and
specific, sometimes even able to zoom in on an area of interest.

The more detailed a model is, the more cumbersome, unstable and computa-
tionally heavy it becomes. In engineering one therefore generally seek to reduce
the number of parameters as much as possible, while still keeping the desired be-
havior of the output intact. Such an instrumentalistic model can be achieved by
equations which lack a biological equivalent, creating so called ”black boxes” for
which we know the input and the output but not what is actually happening inside.
Many biological systems are studied in a similar fashion: a stimulation is added
and we measure the reaction of the organism but we can not truly see what is
happening between the two events. This serves as reminder that several different
systems structures may give the same difference in in- and out signal, and even
though our model can be fitted perfectly to our experimental data, this is not proof
that we have accurately described the system.

The instrumental approach is effective for constructing models that are useful
for making predictions, but goes against the explanatory philosophy of biology.
Biological models are often used to explore parts of and interactions in a system
that are not directly measurable experimentally and this requires that many param-
eters are present that could otherwise have been omitted. As previously stated, this

6



type of directly realistic models carry certain problems, such as instability and a
tendency to be over-parametrized and overfitted. For such an over parametrized
system, there will be many parameter sets that carry acceptable solutions which
might make it hard or even impossible to gain a clear view of the core predictions
(for more on core predictions, see section 4.3).

A hybrid between these two approaches would yield a model which is criti-
cally realistic, where some output not measured in the lab have been chosen to be
modeled and the model simulations are used to formulate explanations for their
mechanistic behaviors [19]. The first model in this thesis is such a model. The
signaling chain of the β-adrenoceptors have been simplified, with several different
proteins lumped into the same state variable at times, but the basic structure of the
signaling chain inside the cell has been preserved. A minimized model have then
been used to identify crucial states and mechanisms for the desensitisation.

Analyzing a system can be done qualitatively or quantitatively. A qualitative
analysis investigates whether a certain system’s structure can describe the general
attributes we are looking for, without specific units for measuring it. A quantita-
tive analysis is more detailed, and evaluates whether it is possible to find a param-
eter set that can quantitatively describe the data, which would make it possible to
predict specific values for the parameters, for example reaction rates.

3.4 Existing models of the β-adrenergic signaling pathway A large body of
knowledge of the mechanisms of the different proteins in the β-adrenergic signal-
ing pathway already exists, but in order for us to fully comprehend the functioning
of the system, all these parts must be put together.

Several models which simulate different parts of the β-adrenoceptor signaling
system already exist, a review of some of them can be found in [20]. Ligand
binding of the receptor have been modeled, both in the aspect of how the ligand
may bind to the receptor, receptor cross-linking, spatial distribution of the recep-
tors and which effect different ligands have on the signaling pathway [21] [22]
[23] [24] [25]. More and more focus has been put on compartmentation and spa-
tial distribution of the signaling proteins, and here models can be of especially
great use as practical experiments removing the compartmentation in the cell are
difficult to perform [7], [26], [27], [28].

An ambitious model of the events from receptor activation all the way to cell
contraction have been constructed by Saucerman et al [29], who later used a model
to investigate how compartmentation affects signaling in neonate cardiomyocytes
[30].

Several of these models are used in order to find more effective therapeutical
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drugs in various forms of heart diseases. The model built in this thesis is aimed
towards investigating the difference between the fetal and the adult β-adrenergic
signaling.

3.5 Aim of the Thesis The model constructed in this thesis is meant to work
as an overview of the β adrenergic signaling system in the adult heart, down to
the level of cAMP and the kinase feedback loops. It is to be used as a basis
for construction of experiments to further investigate the desensitisation of the
same signaling pathway in adults and the possible reasons for the absence of the
desensitisation in fetuses.

What we require from the model at this stage is that:

• It must be able to perform the peak effect behavior of the first stimulation.

• A second stimulation should show how long the duration of the desensitisa-
tion is.

• The desensitisation of the system should decrease more and more the longer
the system is allowed to rest and finally disappear completely.

• There must exist at least one parameter set that can acceptably describe
experimental data of the desensitisation gained from heart tissue.

4 Materials and methods
Here will follow descriptions of how the theories of mathematical modeling were
applied to the β adrenergic receptor signaling pathway, as well as how data of its
desensitisation was obtained from chicken hearts.

4.1 Computer software The software used in this thesis was Matlab R2009b
with the add-on toolboxes SBTOOLBOX2 and SBPD [31]. Matlab is a techni-
cal computing language and environment designed by MathWorks to be used in
solving a broad range of technical computing problems. Matlab in itself is very
general-purpose, but several add-on toolboxes and packages can be downloaded
to solve specific tasks or provide specific computing environments. SBTOOL-
BOX2 and its extension SBPD are Matlab add-on toolboxes specifically designed
for constructing and simulating models in systems biology. The model was writ-
ten and simulated in SBTOOLBOX2 and SBPD, and the optimization was con-
structed in the basic Matlab environment.

Code for the model and cost function are available in appendix.

8



4.2 Transforming biology to ordinary differential equations The state of
a model can be described as a snapshot of it that contains all the informations
needed to predict its actions. This information is contained in state variables,
descriptions of how the different forms of the proteins react to signals within the
system. The state variables of this model are each described by an ordinary dif-
ferential equation (ODE), which tells us how the state variable changes over time,
and an initial value, which gives us a starting point from which to begin counting.

An ODE can be defined as

d[xi]
dt

= fi(x1...xn, p1...pn) (1)

where xi are state variables, pi are parameters and t is time.
The ODEs in this model were built using the law of mass action, which states

that the rate of an elementary reaction is proportional to the product of the con-
centrations of the participating substrates [32]. In order to calculate the change
in concentration of a substrate (S ) which turns into a product (P), with the help
of a catalyst (C), one would multiply the concentrations of the substrate and the
catalyst with a coefficient (k) which regulates the rate of the reaction. The rate
can be dependent on many things, such as the proportions of the different proteins
involved and the way in which they interact, and the constant may have different
levels of complexity depending on the type of reaction. The equation for the sim-
plest type of reaction involving the molecular species described above would look
like this:

d[P]
dt

= k f ∗ [S ] ∗ [C] (2)

If it so happens that the product could also turn back into the substrate, this
reaction must be subtracted from the previous equation to accurately describe the
change of the system:

d[P]
dt

= k f ∗ [S ] ∗ [C] − kb ∗ [P] (3)

And the substrate would change correspondingly:

d[S ]
dt

= kb ∗ [P] − k f ∗ [S ] ∗ [C] (4)

The concentrations of the different molecular species are then our state vari-
ables and the coefficients our parameters. The initial values will provide the pro-
portions between different states of the same molecule, but not between different
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molecules as the parameters are allowed to run free during the optimization (see
4.3).

An example from our model is the activation of the Gαi by the phosphorylated
β2receptor (see tab. 1)

d(Giact)
dt

= k8 ∗ B2p ∗Gi − k9 ∗Giact (5)

A variable can be used to describe a relation between different state variables
that is not affected by time, such as the number of receptors remaining the same,
independently of which state they are currently in (see tab. 1).

B1tot = B1int + B1act + B1 + B1p (6)

A complete list of the state variables in this model and their biological equiv-
alent can be seen in tab. 1 and how they affect each other is depicted in Figure
2.

The values of the state variables are proportional and represent the proportion
of the protein present in each state, not the absolute concentrations or amounts.
Before the model was used to simulate any experiments, it was allowed to reach
a steady state without an in signal. A steady state can be described as the typical
state for the system to be in, where the concentrations of the different molecular
species are in a dynamic equilibrium. Therefore the initial values play little role
in the simulation of the experiments.

4.3 Optimizing the model When simulating the model, each state variable
and each parameter needs to have a numerical value assigned to them. To help the
model give as accurate a description as possible of our system, we need to fit it to
our data. This is done through changing the parameters. Most often, values such
as rate constants and concentrations in a biological system are described in the
literature, but as it is rare for all constants in a system to be measured by the same
research group in the same type of cell in the same experimental conditions, pa-
rameters gathered from the literature are likely to be inconsistent. This introduces
an uncertainty in the model, and might compromise the simulation or give an in-
accurate image of the system mechanics. Therefore we wish to employ another
strategy to fit the model to the data; this is normally done through optimizing the
parameters of our model. The optimization consists of constructing an optimiza-
tion algorithm which strives to reduce the difference between the data points and
the model simulation. A common way to do this is through a cost function. The
cost function, as the name implies, calculates the cost, which is a measurement
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of how much the model simulation deviates from the experimental data, often ob-
tained through measuring the residuals. The larger the deviation, the larger the
cost. The optimization algorithm will then strive to find combinations of values
for the different parameters, parameter sets, which minimizes the cost as much as
possible.

The cost function used in this thesis is

V(p) =

n∑
t=1

(y(t) − ŷ(t, p))2

S E(t)2 (7)

Where V(p) is the cost for the model parameter set p, t is the time, y(t) is
the experimental data point at the time t and ŷ(t, p) is the simulated value at the
time t for the parameter set p. Acceptable parameter sets can then be determined
through Pearson’s χ2 test as those that have a cost which is lower than χ2(k), with
k denoting the degrees of freedom. The cost is normalized with the standard error
(S E) for each data point, which means that it will fit better to points with a small
SE as they are considered to be more reliable. However, it is possible to introduce
weights to the cost function which will force it to put more emphasis on points of
our choice instead.

The optimization algorithm used was simannealingSBAOClustering from the
Systems Biology Toolbox for Matlab. All parameter sets with a cost below the
cut-off were saved and used in later analysis. Biological models are often over
parameterized, which has the consequence that there might be more than one pa-
rameter set what has an acceptable fit to the experimental data. We would of
course wish to use the best one, but how to define ”best” when the mathematically
optimal parameter set might make no sense biologically? As mentioned before,
we could compare the optimized parameters to the literature to see if they are
plausible, or even restrict which values they are allowed to take during the opti-
mization. For these literature values to be relevant, they must be gathered from the
same system under the same circumstances. Also, since all amounts of proteins
used in this model are relative, the rate constants gained through the optimization
will not be comparable to literature values.

Should no acceptable parameter set be found during the optimization we might
have to reject the model structure altogether. This is one of the strongest state-
ments that can be done in systems biology, and fits well together with the scientific
notion that we can not prove hypotheses, only reject or fail to reject them [19].

4.4 Core predictions Core predictions are unique qualitative behaviors dis-
played by all acceptable parameter sets, that can later be measured experimentally.
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Core predictions are acquired by simulating a new experiment with all or an intel-
ligently chosen subset of the acceptable parameter sets, and if all parameter sets
show the same behavior, we know that we have identified a mechanism essen-
tial for the function of the system [19]. The same procedure can be applied to
state variables other than those optimized against to investigate possible essential
mechanisms, but it is important that these predictions can be used to construct ex-
periments to confirm or reject the hypothesis in order to be useful. When working
with core predictions, we are not interested in the ”true” values of the parameters,
as much as in the mechanisms of the entire system. Core predictions can be used
to explore such questions as ”Is phosphorylation of the receptors necessary for
the desensitisation?”, ”Are the elements already present in the signaling pathway
enough to desensitise the system?” and ”Are both types of receptors essential for
the desensitisation to occur?” rather than predict exact rate constants or concen-
trations.

4.5 Minimization of the model In order to see which states modulates the
signal most significantly a minimized version of the model was constructed. This
was done simply by excluding parts of the original model and optimizing it anew
against the theoretical curve. If the reduced model was still able to describe the
data, yet another state or a group of states were excluded. The final version will
then be the simplest combination of states which can still describe the desensiti-
sation.

4.6 Experimental procedures: contraction force of heart tissue To inves-
tigate the time span for the desensitisation in cardiac tissue, an in vitro experiment
was performed. Due to restrictions in time and laboratory equipment cAMP could
not be directly measured, but contractile force of the cardiac tissue was used as an
approximation.

The force of contraction was measured in trabecula of freshly sacrificed adult
chickens, using the same equipment and preparation methods as described by
Lindgren and Altimiras [33]. Trabecula are bundles of muscle fibers running
along the ventricular wall, and by carefully separating them from the rest of the
muscle, minimal damage was inflicted upon the sample tissue. After dissection
the trabecula were mounted with one end tied to a fixed rod and the other to a
force displacement transducer, submerged in oxygenated, modified Ringer solu-
tion and stimulated with platinum electrodes to elicit contraction (frequency 1.5
Hz, pulse duration 20 ms and a voltage of 10-20 V). The trabecula were stabilized
and adjusted to the muscle length that produced 80% of maximal twitch force, ac-
cording to the procedures in [33]. This resting tension was maintained throughout
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the experiment.
After preparation, the force of contraction of the trabecula was recorded for

5 minutes previous to the stimulation to attain a baseline value. Each trabeculae
was then stimulated once for 10 min with 100 nM ISO to gain a maximal stimu-
lation without overactivation (Isa Lindgren, unpublished values). The stimulation
was interrupted by changing the buffer and the trabeculae was allowed to rest un-
perturbed for 5 minutes before being stimulated for 10 min with 100 nM ISO a
second time.

The mean force of contraction was calculated for each minute of the recorded
data. If the difference in force of contraction between 5 minutes and one minute
before the stimulation was >30% the tissue was considered too unstable to give a
reliable measurement. Likewise if the difference between one minute before the
first stimulation and one minute before the second stimulation differed >50%.

The model was fitted to the data from this experiment and used to predict
how the desensitisation behaved, and according to this prediction a second set of
trials was carried out, with the resting time between the stimulations reduced to 2
minutes (see Figure 8).

4.7 Normalization Both experimental data and data simulated in the model
were normalized with fold change where the last minute before the first stimula-
tion was equal to 1. The variation was expressed as the standard error (SE).

4.8 Model requirements As mentioned previously, every model is a simpli-
fication of the real system and should be constructed to answer a certain question.
Our model of the β-adrenergic signaling pathway is to be used when investigat-
ing the differences in the desensitisation of the system between fetal hearts and
adults. As a step towards this, we first aim to construct a model that is capable of
describing the adult desensitisation. To evaluate how good the model is a list of
analytical tests and requirements have been formulated:

• Using data from the literature to perform a qualitative analysis to investigate
if the model can perform the general desensitisation behavior of the β adren-
ergic pathway seen in previous studies [7]. This includes the peak effect and
a prolonged resistance towards reactivation even though the stimulus have
been removed briefly.

• It is assumed that the sensitivity of the cells to agonist stimulation will re-
turn after acute stimulation if the receptor is allowed to rest for a sufficient
amount of time [1]. This must be the case in the model simulation as well.
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• Can we fit the model to the experimental data and find acceptable parameter
sets?

• Can we use the model to predict the duration of the desensitisation in cardiac
tissue?

• Can we use the model to formulate core predictions about the system and
identify key mechanisms for the desensitisation?

4.9 Project limitations

• The time limit for the project was 40 weeks.

• Experimental data for the states in our experimental setup was unavailable,
we only had access to literature values.

• Restrictions in time and laboratory equipment prevented us from measuring
cAMP directly in the tissue. Instead we performed a pilot study, where the
amount of cAMP was approximated through the contractional force of the
heart tissue.

5 Results

5.1 Structure of the original model In the original model, each receptor is
considered to have four states. The first state is when it is in the cell membrane
and receptive to activation. In the second state, the receptor is activated by the lig-
and and starts to signal through Gs. This happens as soon as the ligand is present
in the model. The receptor then enters the third state where it is phosphorylated
and can no longer signal through Gs. However, in the case of the B2-receptor, it
starts signaling through Gi instead. In the cell, the receptor itself may be phos-
phorylated at several different sites by different proteins which will have different
effect, but in this model the receptor simply is or is not phosphorylated. From
the phosphorylated state the receptor can go back to the first state, waiting to be
activated once again, or it can proceed to be internalized in the fourth state. In
the cell the latter is a longer term state, as the receptor binds to β-arrestin and is
brought into the cell in calveolae to be degraded or circulated out to the surface
again. Internalized receptors in a cell may or may not be able to still signal, but in
this model they are considered unable to do so. Downregulation is not considered
as it would have no effect in the studied time period.
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The two G-proteins, Gs and Gi, each have two states, inactive or active. They
are considered as already bound to the receptor and ready to be activated as soon
as there is ligand present. In this model the supply of GDP is inexhaustible and
the reactivation of the G-protein is instantaneous, therefore binding of GTP to the
G-protein is not modeled as a separate state variable. The G-proteins then affect
the transformation between the inactive or active state of AC. The activated AC in
turn stimulates production of cAMP, which is added to a basal production already
present. The two groups of kinases, GRK and PKA, are activated by cAMP and
phosphorylate only the active state of the receptor. In addition, PKA has a negative
effect on the cAMP concentration.

The in signal, H1 and H2, is here treated as parameters rather than variables,
and have different coefficients, which would make it possible to simulate activa-
tion with different ligands that might activate the two types of receptor differently.
Neither H1, H2 nor their coefficients were optimized.

A flowchart of the different states present in the model can be seen in Figure
2, tab. 2 presents the model ODEs and tab. 1 presents the parameters and their
biological equivalents.
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Table 1: List of state variables in the model and their biological equivalents.

List of state variables

State Biological equivalent

B1 β1-receptor in membrane, bound to G-protein and ready to receive a ligand
B1act β1-receptor in membrane, bound to ligand and signaling through Gαs

B1p Phosphorylated β1-receptor in membrane, unable to signal
B1int Internalized β1-receptor, unable to signal
B2 β2-receptor in membrane, bound to G-protein and ready to recieve a ligand
B2act β2-receptor in membrane, bound to ligand and signaling through Gαs

B2p Phosphorylated β2-receptor in membrane, bound to ligand and
signaling through Gαi

B2int Internalized β2-receptor, unable to signal
Gs Gαs bound to receptor
Gsact Unbound Gαs, able to activate AC
Gs Gαi bound to receptor
Gsact Unbound Gαi, able to inhibit AC
AC Adenylyl cyclace unable to catalyze production of cAMP
ACact Adenylyl cyclace able to catalyze production of cAMP
cAMP cyclic AMP
GRK G-protein coupled receptor kinase unable to phosphorylate the receptor
GRKact G-protein coupled receptor kinase able to phosphorylate the receptor
PKA Protein Kinase A unable to phosphorylate the receptor
PKAact Protein Kinase A able to phosphorylate the receptor and

associated proteins able to catalyze breakdown of cAMP
H Ligand
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Table 2: State variable equations for the original model.

d(B1)/dt = k1d ∗ B1int + k1c ∗ B1p − kbas1 ∗ B1 − B1 ∗ (kiso1 + kip1) ∗ H1
d(B1act)/dt = kbas1 ∗ B1 + B1 ∗ (kiso1 + kip1) ∗ H1 − k1a ∗ B1act∗

∗(kGRK ∗GRKact + PKAact)
d(B1p)/dt = k1a ∗ B1act ∗ (kGRK ∗GRKact + PKAact) − (k1b + k1c) ∗ B1p
d(B1int)/dt = k1b ∗ B1p − k1d ∗ B1int

d(B2)/dt = k2d ∗ B2int + k2c ∗ B2p − kbas2 ∗ B2 − B2 ∗ (kiso2 + kip2 + kter) ∗ H2
d(B2act)/dt = kbas2 ∗ B2 + B2 ∗ (kiso2 + kip2 + kter) ∗ H2 − k2a ∗ B2act∗

∗(kGRK ∗GRKact + PKAact)
d(B2p)/dt = k2a ∗ B2act ∗ (kGRK ∗GRKact + PKAact) − (k2b + k2c) ∗ B2p
d(B2int)/dt = k2b ∗ B2p − k2d ∗ B2int

d(Gs)/dt = k3b ∗Gsact − k3a ∗Gs ∗ (B1act + B2act)
d(Gsact)/dt = k3a ∗Gs ∗ (B1act + B2act) − k3b ∗Gsact

d(Gi)/dt = k3d ∗Giact − k3c ∗ B2p ∗Gi
d(Giact)/dt = k3c ∗ B2p ∗Gi − k3d ∗Giact

d(AC)/dt = k4b ∗ ACact − k4a ∗Gsact/(kinh + Giact) ∗ AC
d(ACact)/dt = k4a ∗Gsact/(kinh + Giact) ∗ AC − k4b ∗ ACact

d(cAMP)/dt = cAMP0 + ACact ∗ k5 − kPKA ∗ PKAact ∗ cAMP

d(GRK)/dt = −cAMP ∗ k6a ∗GRK + k6b ∗GRKact
d(GRKact)/dt = cAMP ∗ k6a ∗GRK − k6b ∗GRKact

d(PKA)/dt = −cAMP ∗ k6c ∗ PKA + k6d ∗ PKAact
d(PKAact)/dt = cAMP ∗ k6c ∗ PKA − k6d ∗ PKAact
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Figure 2: Flow chart of the original model. Whole lines are transitions between
different states of the same protein, dashed lines are catalytic actions with black
arrow indication stimulation actions and white triangle inhibition.
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5.2 Minimal model structures Minimization of the model against the theo-
retical data showed that the desensitisation of the system could still be described
if either the β1 or the β2 receptor was removed. The minimal model therefore
has only one receptor, the β1, which does not signal through Gαi. Additionally,
the internalized state of the receptor and the B1 state have been joined into one.
The receptor thus have three states: an active state where it signals though Gαs,
a resting state where a ligand can bind and a phosphorylated state where it can
neither be activated nor carry a signal. A model with a receptor of only two states
is incapable of correctly describing the desensitisation.

Likewise, the Gs and the AC states can been joined without the system loosing
the desensitisation.

Both phosphorylation of the receptor and breakdown of cAMP occurs sponta-
neously in the model, but the minimized model still requires a negative feedback
loop from the kinases either to the receptor or to cAMP in order to describe the
desensitisation behavior. Here the minimized model is split into two versions of a
minimal model (Figure 3, tab. 3).

Table 3: State variable equations for the minimal model.

d(B1)/dt = k1c ∗ B1p − kbas1 ∗ B1 − B1 ∗ (kiso1 + kip1) ∗ H1
d(B1act)/dt = kbas1 ∗ B1 + B1 ∗ (kiso1 + kip1) ∗ H1 − k1a ∗ B1act
d(B1p)/dt = k1a ∗ B1act − k1c ∗ B1p

d(Gs)/dt = k3b ∗Gsact − k3a ∗Gs ∗ B1act
d(Gsact)/dt = k3a ∗Gs ∗ B1act − k3b ∗Gsact

d(cAMP)/dt = cAMP0 + Gsact ∗ k5 − kPKA ∗ PKAact ∗ cAMP

d(PKA)/dt = −cAMP ∗ k6c ∗ PKA + k6d ∗ PKAact
d(PKAact)/dt = cAMP ∗ k6c ∗ PKA − k6d ∗ PKAact
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(a) Minimal Model 1
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(b) Minimal Model 2

Figure 3: Minimal models of the system. One receptor with three receptor states
and one feedback loop from the kinases either to the phosphorylation of the re-
ceptor or to breakdown of cAMP are both required and sufficient to describe the
theoretical data.
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Figure 4: Qualitative analysis: Models fitted to theoretical values adapted from
experiments in [7] with a constant standard deviation.

5.3 Qualitative fitting to theoretical desensitisation data In order to qual-
itatively evaluate the ability of a model to perform the desensitisation behavior it
was fitted to data points adapted from an experiment by Xin et al. (Figure 4 [7])
with a constant standard error for each point. In this experiment Xin et al. esti-
mated the cAMP content in HEK293 cells, an immortal cell line derived from hu-
man embryonic kidney cells, by measuring the current through transfected cyclic
nucleotide-gated channels. The HEK-293 cells were stimulated with 1 µM ISO
for 5 minutes, washed and allowed to rest during 5 minutes and then stimulated
again for 5 minutes.

As can be seen in fig 4, the original model and the two minimal models are ca-
pable of performing the peak effect with its rapid rise and fall in response, as well
as maintaining the desensitisation during a second stimulation. Simulations of the
experiment where the resting time was changed also shows how the sensitivity to
the second activation returns with a longer rest (Figure 5).
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Figure 5: All three models predict that the longer the cells are allowed to rest, the
more forcefully they will respond to the second activation. Graph shows only the
prediction from the original model.

5.4 Cardiac contractility and model core prediction of a shorter resting
time No significant difference in the amplitude of the peaks between the first
and second stimulation could be discerned in our experimental setting, so clearly
cardiac tissue resensitises with less than 5 minutes rest (Figure 6).

The models were optimized to the new data and all acceptable parameter sets
found during the process was saved. The original model was able to correctly
describe the experimental data, but the minimal models were not. Figure 7 shows
the simulation of the experiment with the parameter set for the with the lowest
cost found for the original model.

The acceptable parameter sets were then used to predict how short the rest
between the two stimulations should be in order for us to catch the desensitisation.
When allowed only one minute of rest, the simulation of the experiments showed
no reaction to the second stimulation whereas a small peak could be seen for three
minutes of rest (Figure 8).
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Figure 6: Force of contraction in cardiac tissue. Normalized to fold change. o is
mean of the trials and bars are SE (n=11).

Figure 7: Simulation of the experiment with the parameter set of the lowest cost.
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(a) 1 min rest (b) 2 min rest

(c) 3 min rest (d) 4 min rest

Figure 8: Core predictions of 1-4 min rest (A-D respectively). The response to the
second stimulation is completely gone when the rest is reduced to 1 min.

Figure 9: Experimental testing of the model prediction with 2 min resting time
(n=13). Each line represents one trial. The tissue was too disturbed during the
washing and the prediction (Figure 8B) could neither be confirmed nor rejected.
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5.5 Testing of predicted resting time For all acceptable parameter sets found,
the model predicted that the second peak would be almost non-existent, that is, the
desensitisation still in effect, after a rest of only one minute (Figure 8A). However,
the experimental setup did not allow for such a short resting time and instead we
tested a two minute rest which the model predicted would also give a severely
reduced second peak (Figure 8B).

With a resting time of only 2 minutes the behavior of the trabeculae at the
second stimulation became too varied to give a conclusive image of the desensiti-
sation (see Figure 9) and the prediction remains unconfirmed.

Table 4: Summary of model capabilities.

Model Theoretical Resensitisation Experimental Predict
Data Data Resting Time

Original Model Yes Yes Yes Yes
Minimal Models Yes Yes No -
All Smaller Models No - - -

6 Discussion
The models in this thesis aim to describe the first steps in the signaling pathway
of the cardiac β-adrenergic receptors. Already in the original version of the model
several proteins and events have been lumped into the same state variables as a
simplification (see 5.1), the most noteworthy of which are the phosphodiesterases
activated by PKA, the β-arrestin binding to GRK as a part of the internalization
process and several different isoforms of AC treated as the same protein. In this
original version of the model, GRK and PKA phosphorylates the receptor through
the same mechanism, even though in the cell they target different phosphorylation
sites with a slightly different effect on the efficiency of for example the switching
of the β2 subtype from Gαs signaling to Gαi and the process of internalization.

Since we are only interested in the immediate desensitisation of the pathway,
regulation of gene expression is not included in any of the models, and therefore
up- and downregulation of the proteins participating in the pathway sets a time
limit to the experiments that can be performed based on the predictions of the
model. Neither is any type of crosstalk between receptors included. However, this
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shows that according to our hypothesis of how the system works, no interference
from sources outside of the system is needed to maintain the desensitisation.

Even more state variables have been joined or excluded in the minimal mod-
els. These models are only capable of describing the theoretical data, a minimal
version that is also capable of describing the experimental data needs to be con-
structed. The exclusion of the β2-receptor, and subsequently the Gαi pathway,
shows that these two might not be critical to the desensitisation. This conclusion
is supported by the fact that the β2-receptor density is much lower than β1-receptor
density in the heart, and in rats the receptor type seems to be comparmentalized to
the deep transverse tubules of the plasma membrane where they are hard to reach
for the ligand [34]. The compartmentation of the signaling pathway changes dur-
ing heart failure [35], and therefore this feature could be interesting to add in
future versions of the model.

All three models are capable of qualitatively describing the de- and resensi-
tisation of cardiac β-adrenoceptors, but only the original model could acceptably
describe experimentally gained data where contraction of the tissue was used as
an estimate of the cAMP production. The contraction of muscle tissue is a more
complex process than synthesis of cAMP and is mostly influenced by calcium
whose release is triggered not only via β-adrenoceptors [3]. Despite this, as a
rough estimate of the cAMP production, the force of contraction is sufficient. The
cardiac tissue displayed the typical peak behavior of the desensitisation during
both the first and second stimulation and a stable baseline before the first stimula-
tion. After washing, the baseline was lowered in most strips, and showed a greater
variability. The mechanism behind this behavior is yet unidentified, but it could
be caused by mechanical strain during washing. This could also be the cause of
the great variation in response to the second stimulation after only two minutes of
rest. Before the first stimulation the tissue was allowed to stabilize for at least 20
minutes, and two minutes might be too short for them to recover. In fact, several
strips showed less stability in their resting tension after the washing in both ex-
periments. The reason for the incapability of the minimal models to describe the
experimental data seems to be connected to the fact that the force of contraction
during the second stimulation starts at a lower baseline than the first one. The cost
function considers each data point to be equally important, but we know that the
tissue gets disturbed by the washing and that those data might not be as reliable
as the peaks. The cost function could be weighted to reflect this. However, we
get a good fit in the original model despite not performing these adjustments and
no better fit could be attained in neither the original nor the minimal models by
optimization only towards the first peak. The original model could then be used to
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consistently predict how the desensitisation proceeds with differing resting times
in the experiment, although these predictions remains to be tested (Figure 8).

Both the original model and the minimal models have been optimized only
towards data of cAMP even though many other states have been included in
the model structure. This makes the models over parameterized and unable to
uniquely determine an acceptable parameter set. It is meant to provide an overview
of the system that can help us identify where the most important mechanisms for
the difference between fetal and adult signaling is located, and provide a basis
for a more detailed investigation. If the remaining states were investigated, they
might yield core predictions helping us identify the origin of the desensitisation,
otherwise experimental data would need to be added to the model in order to make
reliable predictions.

In the minimal models GRK phosphorylation of the receptor has been removed
and despite this the model can still describe the desensitisation. Auman [1] claims
that the first part of the cardiac β-adrenergic desensitisation is mediated through
the β-adrenergic pathway itself but that the prolonged resistance to activation is
due to interference from proteins activated by other receptors. However, Xin et al
[7] show that in HEK293 cells, cAMP breakdown by PDE4, a cyclic nucleotide
phosphodiesterase activated by PKA, is most responsible for the peak effect, while
receptor phosphorylation by GRK is the main mechanism for retaining the desen-
sitisation through the washing, and results from Violin et al supports this [28]. Xin
et al [7] also show that the Gαi pathway does not significantly affect the cAMP sig-
nal. The result of the simulations is not surprising, however, as in this model GRK
and PKA phosphorylates the receptor in the same way, which is not the case in
the living cell. In improved versions of this model, GRK ought to be tied closer
to the internalization of the receptor.

The minimal models also tells us that at least one feedback loop from the ki-
nases, either to catalyze phosphorylation of the receptor or breakdown of cAMP, is
both needed and sufficient in order to describe the desensitisation. To test this ex-
perimentally, phosphorylation of the receptor could be blocked, however it is the
authors belief that adjustment of the GRK phosphorylation in the model should be
carried out before any strong conclusions can be drawn from this result. Another
interesting conclusion that can be drawn from the minimal models is that the re-
maining receptor needs three states. Merely switching the signaling through Gαs

on or off is not enough, but some form of resting state needs to be included.
Future development and investigation of the model might include:

• Tie GRK phosphorylation of the receptor closer to internalization, as it has
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been shown that the receptor is affected differently by phosphorylation by
GRK and PKA, since they in real life phosphorylate at different sites.

• Fitting of the model to experimental data on the concentrations of cAMP
in adult and fetal chicken hearts. This can be done in two ways: Fitting
of the model to experimental data from fetal hearts with free parameters to
investigate if the system structure can simulate the lack of desensitisation.
Fitting of the model to experimental data from fetal hearts with the optimal
parameter set from the adult model and only one or a few free parameters,
to investigate if theoretical changes leading to the disappearance of the de-
sensitisation can be identified.

• Inclusion of parameters that allow changes in the proportions between the
proteins, not only between the different states of the same protein.

• Model reduction to find a minimal model for the experimental data.

• Inclusion of compartmentation in the model.

7 Conclusions
One feedback loop from the kinases to either the phosphorylation of the receptor
or the breakdown of cAMP is necessary for the model to be able to describe the
desensitisation, and three states in one single receptor is both enough and required.

The cardiac tissue displays the peak behavior of the desensitisation when stim-
ulated with ISO for ten minutes. Five minutes of rest between stimulations is
enough to allow it to resensitise. The cardiac tissue is predicted to be completely
desensitised during the second stimulation if it is allowed to rest only one minute
between stimulations.
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A The code

A.1 The models

Original model

********** MODEL NAME

beta1_2ver1

********** MODEL NOTES

********** MODEL STATES

d/dt(B1) = k1d*B1int + k1c*B1p - kbas1*B1 - B1*(kiso1 + kip1)*H1

d/dt(B1act) = kbas1*B1 + B1*(kiso1 + kip1)*H1 - k1a*B1act*(kGRK*GRKact+PKAact)

d/dt(B1p) = k1a*B1act*(kGRK*GRKact+PKAact) - (k1b+k1c)*B1p

d/dt(B1int) = k1b*B1p - k1d*B1int

d/dt(B2) = k2d*B2int + k2c*B2p - kbas2*B2 - B2*(kiso2 + kip2 + kter)*H2

d/dt(B2act) = kbas2*B2 + B2*(kiso2 + kip2 + kter)*H2 - k2a*B2act*(kGRK*GRKact+PKAact)

d/dt(B2p) = k2a*B2act*(kGRK*GRKact+PKAact) - (k2b+k2c)*B2p

d/dt(B2int) = k2b*B2p - k2d*B2int

d/dt(Gs) = k3b*Gsact - k3a*Gs*(B1act+B2act)

d/dt(Gsact) = k3a*Gs*(B1act+B2act) - k3b*Gsact

d/dt(Gi) = k3d*Giact - k3c*B2p*Gi

d/dt(Giact) = k3c*B2p*Gi - k3d*Giact

d/dt(AC) = k4b*ACact - k4a*Gsact/(kinh+Giact)*AC

d/dt(ACact) = k4a*Gsact/(kinh+Giact)*AC - k4b*ACact

d/dt(cAMP) = cAMP0 + ACact*k5 - kPKA*PKAact*cAMP

d/dt(GRK) = - cAMP*k6a*GRK + k6b*GRKact

d/dt(GRKact) = cAMP*k6a*GRK - k6b*GRKact

d/dt(PKA) = - cAMP*k6c*PKA + k6d*PKAact

d/dt(PKAact) = cAMP*k6c*PKA - k6d*PKAact
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B1(0) = 7

B1act(0) = 1

B1p(0) = 1

B1int(0) = 1

B2(0) = 7

B2act(0) = 1

B2p(0) = 1

B2int(0) = 1

Gs(0) = 9

Gsact(0) = 1

Gi(0) = 9

Giact(0) = 1

AC(0) = 9

ACact(0) = 1

cAMP(0) = 1

GRK(0) = 9

GRKact(0) = 1

PKA(0) = 9

PKAact(0) = 1

********** MODEL PARAMETERS

kbas1 = 0.00001

kbas2 = 0.00001

k1a = 1

k1b = 1

k1c = 1

k1d = 1

k2a = 1

k2b = 1

k2c = 1

k2d = 1
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k3a = 1

k3b = 1

k3c = 1

k3d = 1

k4b = 1

k4a = 1

k6a = 1

k6b = 1

k6c = 1

k6d = 1

kinh = 1

k5 = 1

kGRK = 1

kPKA = 1

cAMP0 = 1

kiso1 = 1

kiso2 = 1

kter = 1

kip1 = 1

kip2 = 1

H1 = 0

H2 = 0

********** MODEL VARIABLES

B1tot = B1int + B1act + B1 + B1p

B2tot = B2int + B2act + B2 + B2p

Bmem = B1act + B1 + B1p + B2act + B2 + B2p

36



********** MODEL REACTIONS

********** MODEL FUNCTIONS

********** MODEL EVENTS

********** MODEL MATLAB FUNCTIONS

Minimal model 1

********** MODEL NAME

beta1_2verMini2

********** MODEL NOTES

********** MODEL STATES

d/dt(B1) = k1c*B1p - kbas1*B1 - B1*kiso1*H1

d/dt(B1act) = kbas1*B1 + B1*kiso1*H1 - k1a*B1act

d/dt(B1p) = k1a*B1act - k1c*B1p

d/dt(Gs) = k3b*Gsact - k3a*Gs*B1act

d/dt(Gsact) = k3a*Gs*B1act - k3b*Gsact

d/dt(cAMP) = cAMP0 + Gsact*k5 - kPKA*PKAact*cAMP

d/dt(PKA) = - cAMP*k6c*PKA + k6d*PKAact

d/dt(PKAact) = cAMP*k6c*PKA - k6d*PKAact
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B1(0) = 8

B1act(0) = 1

B1p(0) = 1

Gs(0) = 9

Gsact(0) = 1

cAMP(0) = 1

PKA(0) = 9

PKAact(0) = 1

********** MODEL PARAMETERS

kbas1 = 0.00001

kbas2 = 0.00001

k1a = 1

k1b = 1

k1c = 1

k3a = 1

k3b = 1

k6c = 1

k6d = 1

k5 = 1

kPKA = 1

cAMP0 = 1

kiso1 = 1

H1 = 0
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********** MODEL VARIABLES

********** MODEL REACTIONS

********** MODEL FUNCTIONS

********** MODEL EVENTS

********** MODEL MATLAB FUNCTIONS

Minimal model 2

********** MODEL NAME

beta1_2verMini3

********** MODEL NOTES

********** MODEL STATES

d/dt(B1) = k1c*B1p - kbas1*B1 - B1*kiso1*H1

d/dt(B1act) = kbas1*B1 + B1*kiso1*H1 - k1a*B1act*PKAact

d/dt(B1p) = k1a*B1act*PKAact - k1c*B1p

d/dt(Gs) = k3b*Gsact - k3a*Gs*B1act

d/dt(Gsact) = k3a*Gs*B1act - k3b*Gsact
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d/dt(cAMP) = cAMP0 + Gsact*k5 - kPKA*cAMP

d/dt(PKA) = - cAMP*k6c*PKA + k6d*PKAact

d/dt(PKAact) = cAMP*k6c*PKA - k6d*PKAact

B1(0) = 8

B1act(0) = 1

B1p(0) = 1

Gs(0) = 9

Gsact(0) = 1

cAMP(0) = 1

PKA(0) = 9

PKAact(0) = 1

********** MODEL PARAMETERS

kbas1 = 0.00001

kbas2 = 0.00001

k1a = 1

k1b = 1

k1c = 1

k3a = 1

k3b = 1

k6c = 1

k6d = 1

k5 = 1

kPKA = 1

40



cAMP0 = 1

kiso1 = 1

H1 = 0

********** MODEL VARIABLES

********** MODEL REACTIONS

********** MODEL FUNCTIONS

********** MODEL EVENTS

********** MODEL MATLAB FUNCTIONS

A.2 The cost functions

The original model, theoretical data

function [error] = newCostFunctionAllStates(param,shouldIPlot)

global icOrig

global pNamesOpt
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global modelName

global FID

modelName = ’beta1_2ver1’;

simOptions = [];

simOptions.method = ’stiff’;

simOptions.maxnumsteps = 1e6;

simOptions.abstol = 1e-9;

simOptions.reltol = 1e-9;

paramOrig = param;

H1 = 0;

H2 = 0;

paramSteady = [param H1 H2];

simDataSteadyState = SBPDsimulate(modelName,1000,icOrig,pNamesOpt,

paramSteady,simOptions);

newIC = simDataSteadyState.statevalues(end,:);

tmpError = 0;

\%\%\%\% Experiment from Xin, Clark, Tran, Rich 2008 \%\%\%\%

\%\% fig 4, control

\% plotted in fig 1

load(’TestDataXin2008.mat’)

measuredTimePoints = TestDataXin2008.Time;

H1 = 100;

H2 = 100;

param = paramOrig;
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param(end-2:end) = 0;

paramXin2008 = [param H1 H2];

try

simDataXin2008_act1 = SBPDsimulate(modelName,measuredTimePoints(1:13),

newIC,pNamesOpt,paramXin2008,simOptions);

catch exception

disp(exception.message)

disp(’Now the simulation crashed in Xin, first stimulation’);

error = inf;

return

end

simDataXin2008_act1.statevalues(end,:);

peak = max(simDataXin2008_act1.statevalues(:,15));

SIMDATAXin2008 = simDataXin2008_act1.statevalues(:,15)./peak*100;

H1 = 0;

H2 = 0;

newSim = simDataXin2008_act1.statevalues(end,:)’;

param = paramOrig;

param(end-2:end) = 0;

paramXin2008 = [param H1 H2];

try

simDataXin2008_wash = SBPDsimulate(modelName,measuredTimePoints(14:16),

newSim,pNamesOpt,paramXin2008,simOptions);

catch exception

disp(exception.message)

disp(’Now the simulation crashed in Xin, washout’);

error = inf;

return

end
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rest = simDataXin2008_wash.statevalues(:,15)./peak*100;

SIMDATAXin2008 = [SIMDATAXin2008; rest];

H1 = 100;

H2 = 100;

newSim = simDataXin2008_wash.statevalues(end,:)’;

param = paramOrig;

param(end-2:end) = 0;

paramXin2008 = [param H1 H2];

try

simDataXin2008_act2 = SBPDsimulate(modelName,measuredTimePoints(17:end),

newSim,pNamesOpt,paramXin2008,simOptions);

catch exception

disp(exception.message)

disp(’Now the simulation crashed in Xin, second stimulation’);

error = inf;

return

end

rest = simDataXin2008_act2.statevalues(:,15)/peak*100;

SIMDATAXin2008 = [SIMDATAXin2008; rest];

tmpError = tmpError + sqrt(sum((TestDataXin2008.Values-SIMDATAXin2008).ˆ2./

(TestDataXin2008.Std.ˆ2)));

AllStates = [simDataXin2008_act1.statevalues’ simDataXin2008_wash.statevalues’

simDataXin2008_act2.statevalues’];

if tmpError < 500

fprintf(FID,’\%4.10f \%4.10f \%4.10f \%4.10f \%4.10f \%4.10f \%4.10f

\%4.10f \%4.10f \%4.10f \%4.10f \%4.10f \%4.10f \%4.10f \%4.10f \%4.10f
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\%4.10f \%4.10f \%4.10f \%4.10f \%4.10f 4.10f \%4.10f \%4.10f \%4.10f

\%4.10f \%4.10f \%4.10f \%4.10f \%4.10f \%4.10f \%4.10f \%4.10f \n’,

[tmpError, param]); fprintf(FID,’\n’);

end

error = tmpError;

if (nargin>1) & (shouldIPlot == 1)

figure(1)

plot(TestDataXin2008.Time,TestDataXin2008.Values,’ko’)

hold on

plot(TestDataXin2008.Time,SIMDATAXin2008,’k-’)

xlabel(’Time’)

ylabel(’cAMP’)

end

end

The original model, experimental data

function [error] = CostFunctionAllStates137Data(param,shouldIPlot)

global icOrig

global pNamesOpt

global modelName

global FID

global OptimData

modelName = ’beta1_2ver1’;
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simOptions = [];

simOptions.method = ’stiff’;

simOptions.maxnumsteps = 1e6;

simOptions.abstol = 1e-9;

simOptions.reltol = 1e-9;

paramOrig = param;

H1 = 0;

H2 = 0;

paramSteady = [param H1 H2];

simDataSteadyState = SBPDsimulate(modelName,1000,icOrig,pNamesOpt,

paramSteady,simOptions);

newIC = simDataSteadyState.statevalues(end,:);

tmpError = 0;

\%\%\%\% Egna experiment \%\%\%\%

\%\% 10 min stimulation, 5 min rest, 10 min stimulation

\% plotted in fig 1

measuredTimePoints = (0:10/900:10)’;

measurements = OptimData(2:30,13:15);

H1 = 0;

H2 = 0;

param = paramOrig;

param(end-2:end) = 0;

paramData5min_rest1 = [param H1 H2];
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try

simData5min_rest1 = SBPDsimulate(modelName,measuredTimePoints(1:450),

newIC,pNamesOpt,paramData5min_rest1,simOptions);

catch exception

disp(exception.message)

disp(’Now the simulation crashed during the first rest’);

error = inf;

return

end

SimMeasure1 = [mean(simData5min_rest1.statevalues(1:90,15))

mean(simData5min_rest1.statevalues(91:180,15))

mean(simData5min_rest1.statevalues(181:270,15))

mean(simData5min_rest1.statevalues(271:360,15))

mean(simData5min_rest1.statevalues(361:450,15))];

norm = SimMeasure1(end);

SIMDATA = SimMeasure1./norm;

H1 = 100;

H2 = 100;

newSim = simData5min_rest1.statevalues(end,:)’;

param = paramOrig;

param(end-2:end) = 0;

paramData5min_act1 = [param H1 H2];

try

simData5min_act1 = SBPDsimulate(modelName,measuredTimePoints(1:900),

newSim,pNamesOpt,paramData5min_act1,simOptions);

catch exception

disp(exception.message)

disp(’Now the simulation crashed during the first stimulation’);

error = inf;

return

end

47



SimMeasure2 = [mean(simData5min_act1.statevalues(1:90,15))

mean(simData5min_act1.statevalues(91:180,15))

mean(simData5min_act1.statevalues(181:270,15))

mean(simData5min_act1.statevalues(271:360,15))

mean(simData5min_act1.statevalues(361:450,15))

mean(simData5min_act1.statevalues(451:540,15))

mean(simData5min_act1.statevalues(541:630,15))

mean(simData5min_act1.statevalues(631:720,15))

mean(simData5min_act1.statevalues(721:810,15))

mean(simData5min_act1.statevalues(811:900,15))];

act1 = SimMeasure2./norm;

SIMDATA = [SIMDATA act1];

H1 = 0;

H2 = 0;

newSim = simData5min_act1.statevalues(end,:)’;

param = paramOrig;

param(end-2:end) = 0;

paramData5min_rest2 = [param H1 H2];

try

simData5min_rest2 = SBPDsimulate(modelName,measuredTimePoints(1:450),

newSim,pNamesOpt,paramData5min_rest2,simOptions);

catch exception

disp(exception.message)

disp(’Now the simulation crashed during the second rest’);

error = inf;

return

end

SimMeasure3 = [mean(simData5min_rest2.statevalues(1:90,15))
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mean(simData5min_rest2.statevalues(91:180,15))

mean(simData5min_rest2.statevalues(181:270,15))

mean(simData5min_rest2.statevalues(271:360,15))

mean(simData5min_rest2.statevalues(361:450,15))];

rest2 = SimMeasure3./norm;

SIMDATA = [SIMDATA rest2];

H1 = 100;

H2 = 100;

newSim = simData5min_rest2.statevalues(end,:)’;

param = paramOrig;

param(end-2:end) = 0;

paramData5min_act2 = [param H1 H2];

try

simData5min_act2 = SBPDsimulate(modelName,measuredTimePoints(1:900),

newSim,pNamesOpt,paramData5min_act2,simOptions);

catch exception

disp(exception.message)

disp(’Now the simulation crashed during the second stimulation’);

error = inf;

return

end

SimMeasure4 = [mean(simData5min_act2.statevalues(1:90,15))

mean(simData5min_act2.statevalues(91:180,15))

mean(simData5min_act2.statevalues(181:270,15))

mean(simData5min_act2.statevalues(271:360,15))

mean(simData5min_act2.statevalues(361:450,15))

mean(simData5min_act2.statevalues(451:540,15))

mean(simData5min_act2.statevalues(541:630,15))

mean(simData5min_act2.statevalues(631:720,15))

mean(simData5min_act2.statevalues(721:810,15))

mean(simData5min_act2.statevalues(811:900,15))];
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act2 = SimMeasure4./norm;

SIMDATA = [SIMDATA act2];

tmpError = tmpError + sum((measurements([1:4 6:29],1)-

SIMDATA([1:4 6:14 16:30])’).ˆ2./(measurements([1:4 6:29],3).ˆ2));

AllStates = [simData5min_rest1.statevalues’ simData5min_act1.statevalues’

simData5min_rest2.statevalues’ simData5min_act2.statevalues’];

if tmpError < chi2inv(0.95,28)

fprintf(FID,’\%4.10f \%4.10f \%4.10f \%4.10f \%4.10f \%4.10f \%4.10f

\%4.10f \%4.10f \%4.10f \%4.10f \%4.10f \%4.10f \%4.10f \%4.10f \%4.10f

\%4.10f \%4.10f \%4.10f \%4.10f \%4.10f \%4.10f \%4.10f \%4.10f \%4.10f

\%4.10f \%4.10f \%4.10f \%4.10f \%4.10f \%4.10f \%4.10f \%4.10f \n’,

[tmpError, param]); fprintf(FID,’\n’);

end

error = tmpError;

if (nargin>1) & (shouldIPlot == 1)

SimulatedData = SIMDATA’

figure(1)

errorbar(OptimData(2:30,1),measurements(:,1),measurements(:,3),’b*’)

hold on

plot(OptimData(2:15,1),SIMDATA(1:14),’b-’)

hold on

plot(OptimData(16:30,1),SIMDATA(15:29),’b-’)

xlabel(’Time’)

ylabel(’Twitch force (Fold change)’)

end

end
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The minimal models, theoretical data

function [error] = newCostFunctionAllStatesMini(param,shouldIPlot)

global icOrig

global pNamesOpt

global modelName

global FID

modelName = ’beta1_2verMini2’;

\% modelName = ’beta1_2verMini3’;

simOptions = [];

simOptions.method = ’stiff’;

simOptions.maxnumsteps = 1e6;

simOptions.abstol = 1e-9;

simOptions.reltol = 1e-9;

paramOrig = param;

H1 = 0;

paramSteady = [param H1];

simDataSteadyState = SBPDsimulate(modelName,1000,icOrig,pNamesOpt,

paramSteady,simOptions);

newIC = simDataSteadyState.statevalues(end,:);

tmpError = 0;

\%\%\%\%Experiment from Xin, Clark, Tran, Rich 2008 \%\%\%\%

\%\% fig 4, control
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\% plotted in fig 1

load(’TestDataXin2008.mat’)

measuredTimePoints = TestDataXin2008.Time;

H1 = 100;

param = paramOrig;

paramXin2008 = [param H1];

try

simDataXin2008_act1 = SBPDsimulate(modelName,measuredTimePoints(1:13),

newIC,pNamesOpt,paramXin2008,simOptions);

catch exception

disp(exception.message)

disp(’Now the simulation crashed in Xin, first stimulation’);

error = inf;

return

end

peak = max(simDataXin2008_act1.statevalues(:,6));

SIMDATAXin2008 = simDataXin2008_act1.statevalues(:,6)./peak*100;

H1 = 0;

newSim = simDataXin2008_act1.statevalues(end,:)’;

param = paramOrig;

paramXin2008 = [param H1];

try

simDataXin2008_wash = SBPDsimulate(modelName,measuredTimePoints(14:16),

newSim,pNamesOpt,paramXin2008,simOptions);

catch exception

disp(exception.message)

disp(’Now the simulation crashed in Xin, washout’);

error = inf;
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return

end

rest = simDataXin2008_wash.statevalues(:,6)./peak*100;

SIMDATAXin2008 = [SIMDATAXin2008; rest];

H1 = 100;

newSim = simDataXin2008_wash.statevalues(end,:)’;

param = paramOrig;

paramXin2008 = [param H1];

try

simDataXin2008_act2 = SBPDsimulate(modelName,measuredTimePoints(17:end),

newSim,pNamesOpt,paramXin2008,simOptions);

catch exception

disp(exception.message)

disp(’Now the simulation crashed in Xin, second stimulation’);

error = inf;

return

end

rest = simDataXin2008_act2.statevalues(:,6)/peak*100;

SIMDATAXin2008 = [SIMDATAXin2008; rest];

tmpError = tmpError + sqrt(sum((TestDataXin2008.Values-SIMDATAXin2008).ˆ2./

(TestDataXin2008.Std.ˆ2)));

AllStates = [simDataXin2008_act1.statevalues’ simDataXin2008_wash.statevalues’

simDataXin2008_act2.statevalues’];

if tmpError < 500

fprintf(FID,’\%4.10f \%4.10f \%4.10f \%4.10f \%4.10f \%4.10f \%4.10f
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\%4.10f \%4.10f \%4.10f \%4.10f \%4.10f \%4.10f \%4.10f \%4.10f \n’,

[tmpError, param]); fprintf(FID,’\n’);

end

error = tmpError;

if (nargin>1) & (shouldIPlot == 1)

figure(1)

plot(TestDataXin2008.Time,TestDataXin2008.Values,’ko’)

hold on

plot(TestDataXin2008.Time,SIMDATAXin2008,’r-’)

xlabel(’Time’)

ylabel(’cAMP’)

end

end
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