Hide menu
spacing

Theoretical Physics

spacing

The research in the Theoretical Physics group is primarily focused on condensed matter physics/theoretical materials science, nanoscience and electromagnetic modeling.

The group also gives a large number of courses on graduate as well as undergraduate levels.

spacing

Highlights

spacing

___________________________________________________________________________

spacing

Wave transport and statistical properties of an open non-Hermitian quantum dot with parity-time symmetry

spacing

B. Wahlstrand, I.I. Yakimenko, and K.-F. Berggren

Phys. Rev. E 89, 062910 (2014)

A basic quantum-mechanical model for wave functions and current flow in open quantum dots or billiards is investigated. The model involves non-Hertmitian quantum mechanics, parity-time (PT ) symmetry, and PT-symmetry breaking. Attached leads are represented by positive and negative imaginary potentials. Thus probability densities, currents flows, etc., for open quantum dots or billiards may be simulated in this way by solving the Schrödinger equation with a complex potential. Here we consider a nominally open ballistic quantum dot emulated by a planar microwave billiard. Results for probability distributions for densities, currents (Poynting vector), and stress tensor components are presented and compared with predictions based on Gaussian random wave theory. The results are also discussed in view of the corresponding measurements for the analogous microwave cavity. The model is of conceptual as well as of practical and educational interest.

spacing

spacing

Real and imaginary wave functions for two nearby states (28 and 29) near the intersection point in the complex plane.

spacing

 

spacing

 

spacing

Responsible for this page: Fei Wang

Last updated:09/11/14